Almost-prime values of polynomials at prime arguments

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalisations of almost prime and weakly prime ideals

Let $R$ be a commutative ring with identity‎. ‎A proper ideal $P$ of $R$ is a $(n-1,n)$-$Phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin R$‎, ‎$a_1cdots a_nin Pbackslash P^m$ ($a_1cdots a_nin Pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin P$‎, ‎for some $iin{1,ldots,n}$; ($m,ngeq 2$)‎. ‎In this paper several results concerning $(n-1,n)$-$Phi_m$-prime and $(n-1,n)$-...

متن کامل

On Prime Values of Cyclotomic Polynomials

We present several approaches on finding necessary and sufficient conditions on n so that Φk(x ) is irreducible where Φk is the k-th cyclotomic polynomial.

متن کامل

Prime Values of Polynomials and Irreducibility Testing

In 1857 Bouniakowsky [6] made a conjecture concerning prime values of polynomials that would, for instance, imply that x + 1 is prime for infinitely many integers x. Let ƒ (x) be a polynomial with integer coefficients and define the fixed divisor of ƒ, written d(ƒ), as the largest integer d such that d divides f(x) for all integers x. Bouniakowsky conjectured that if f(x) is nonconstant and irr...

متن کامل

5 Prime values of reducible polynomials , II

1 Supported by National Natural Science Foundation of China, Grant No. 0171046 and the “ 333 Project” Foundation of Jiangsu Province of China. The work was done while first author was visiting the Mathematical Institute of the Hungarian Academy of Sciences. 2 Supported by Hungarian National Foundation for Scientific Research, Grants No. F 026049 and T 30074 3 Supported by Hungarian National Fou...

متن کامل

Polynomials with No Small Prime Values

Let /(x) be a polynomial with integer coefficients, and let D(/)-gx.d.{/.(*):*eZ}. It was conjectured by Bouniakowsky in 1857 that if f(x) is nonconstant and irreducible over Z, theii \f(x)\/D(f) is prime for infinitely many integers x. It is shown that there exist irreducible polynomials f(x) with D(f) = 1 such that the smallest integer x for which \f(x)\ is prime is large as a function of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2015

ISSN: 0024-6093,1469-2120

DOI: 10.1112/blms/bdv035